KASS Verification Centre & Sea Tests

The sea-trials for demonstration of KASS developed technologies

Geun-Tae Yim

Autonomous Ship Verification & Evaluation Research Centre(ASVERC)

Korea Research Institute of Ships and Ocean Engineering(KRISO)

KASS Project

Korea Autonomous Surface Ship Project

Korea Research Institute of Ships & Ocean Engineering

1. KASS (Korea Autonomous Surface Ship)

kassproject.org

Development of Autonomous Ship Technology

Funded by

Period

2020–2025 (1st~4th year : System development & integration / 5th~6th year : Demonstration)

Ministry of Trade (Industry and Energy) & Ministry of Oceans and Fisheries

Vision

Leading the future ship market and international standards through the development of MASS technology

Development of Core technology of Autonomous ship¹⁾
 Laying the foundation for Commercialization²⁾ through Phased demonstration

1) Core technology of Autonomous ship

- ① Intelligent Navigation System
- ② Machinery Automation System
- ③ Performance Demonstration Center and Demonstration technology
- ④ Operational Technology and Standardization

2) Commercialization target

MASS engaged on International voyages (Mid-sized merchant ship) (Ocean : IMO Level 3 / Coast : IMO Level 2) Vessel

% 2 General tasks, 4 Core technologies, 13 detailed tasks (51 participating organizations)

1. KASS Project

KASS R&D PLAN

ASVERC

Autonomous Ship Verification & Evaluation Research Center

Korea Research Institute of Ships & Ocean Engineering

2. ASVERC – Main Facilities

· Servers & Data for MASS operation

Sim.-based Testbed for Auto. Ship

· MASS evaluation system under virtual

Sea-trial Testbed Vessel

· HAEYANG NURI

A CONTRACTOR OF THE OWNER OWNER

KRISO

Digital Twin Bridge/Engine (DTB/E) Monitoring

· Real-time monitoring system of MASS

Vessel Traffic Service for Sea Tests

• Safety management of MASS & sea-trial area

Simulation-based Testbed for Autonomous Ship (S-TAS)

2024 MO – RoK MASS Symposium

Sea-trial Testbed Vessel - 'HAEYANG NURI'

Purpose

- Real-sea verification of MASS technology equipment, algorithms, and systems (At developing stage).
- Acquisition real-sea training & validation data for MASS technologies

(e.g. Situational awareness system)

Main feature

- Mast
 Server rack
- VDGS*
 Multi control mode
- Intelligent navigation system

*Virtual Data Generation System

2024 MO – RoK MASS Symposium

Sea-trial Testbed Vessel - 'HAEYANG NURI'

VDGS (Virtual Data Generation System)

Purpose

- To diversify verification environment without being constrained by space and time.
- To provide a safe and efficient testing environment

Function

 Generation of navigation/engine data such as virtual seaobject or situation used by autonomous navigation system

Sea-trial Testbed Vessel - 'HAEYANG NURI'

Multi Control Mode

- Navigation by three different operation mode
 - A. Onboard crew
 - B. Intelligent navigation system(Onboard system)
 - C. Operator in the ROC(Remote Operation Centre)
- Navigation using data along with ISA and ANS algorithms in 'B' mode.
- Remote control by operator in the ROC in 'C' mode

Operation Mode of Sea trial testbed vessel (Left: A, Center: B, Right: C)

KOREA RESEARCH INSTITUTE OF

Digital Twin Bridge/Engine (DTB/E)

Onfiguration

MASS Traffic Control

PURPOSE

Shared the status of sea-trial area and traffic

CONFIGURATION

1 CCTV

- 2 VOC
- ③ Weather condition
- ④ Shore Radar

• Vessel Traffic Service for MASS sea test area

Traffic service system

PURPOSE

- ① Safety management of MASS & Sea-trial area
- ② Support for remote operation of test vessels

MAIN EQUIPMENT

- ① SSPA X-Band digital radar & radome
- 2 AIS & VDES (VHF Data Exchange System), VHF
- ③ Operator Console
- ④ Data Management & Storage System
- (5) Digital Twin Bridge Interface System

Autonomous Ship Verification & Evaluation Research Center

Korea Research Institute of Ships & Ocean Engineering

3. Sea tests

3. Establishment of cooperation with regional authorities

ASVERC and Ulsan VTS can share real-time traffic control information

3. Sea Test

Sea test with test vessel

Scheduling & review

- ✓ Weather condition
- ✓ Ship inspection
- ✓ Scenario design
- ✓ Risk assessment
- ✓ Test plan cooperation

ASVERC

Sea test

- ✓ Safety education
- ✓ Briefing of the test
- ✓ Risk management

Testbed vessel

Analysis

- ✓ Sea trial report
- ✓ Feed back

	1 기반 지능항해시스템
	시엄 모고서
	2022.08.16 -08.17
149	2455 #214#
and and a second se	지능항해시스템
V. 4	자율은학시스템 항로주중 실해역 성능시험
mary :	
monry :	
본 시험은 대성 발용하여 4개소 경	시스템의 인선방학방법을 응용하기 위해 사람하여 내에서 시험선을 [유럽의 방호를 추운하고 VDGS로 생성한 가상전박과 실제 전박을
문요양에서 조무로 온 시험은 시험 :	유 하여 수영하였다. 양상중급은 WMOD Seastate 4동급(Swell : N 1.7m. Wind : 100E 10
ttal 조선에서 수의 본 시험의 대상	[퍼)었다. 시스템은 설정함보 추준을 위한 경보를 생성하고, 함보 추준을 위해
10체여를 사용하여	4 타를 제어하였으며, 연진 로드는 60%로 고점하였다.
	L부터 최대 약 10 m. 경유정그로부터 최대 약 50 m 이적하여 방학 확인(Ximits
시험 결과 항요. 1 수행하는 것을	A D FIAM
시험 결과 항료: 8 수영하는 것을	

Sea-test with 'Testbed vessel'

Sea-trial overview

3. Test procedure

• Test procedure

> Sea-trial procedure under development

<Sea-trial scenario considering technical interrelationships>

	integ	grate	ea		em N	lo.	Test Items	Category	Checkli
Sea trial							*Sea Trial opening meeting & safety drill		
							1. Preparation for departure		1
		A1	B1	B6			2. Shifting to Sea(Test area)		
Day 1		2					A1. Data collection and connection status check between devices		A1
	15	\uparrow	\uparrow	\uparrow	\uparrow		A2. Transmission items check according to communication status		A2
			1		1		A3. Takeover request between ship, shore and systems		A3
	16				1		B1. Function check of multi-sensor information matching output system	Digital bridge	B1
							B2. Function check of navigation service platform		B2
	17	C1	C2	C3	A2		B3. Function check of predictive maintenance solution	Integrated platform	B3
					1		B4. Function check of energy integrated control system		B4
	18		1		1		B5. Function check of integrated security management system		B5
							B6. Function check of Virtual Data Generation System for performance validation		B6
	19						C1. Testing by detection distance		C
							C2. Testing by detection target	Situational awareness	C
	20	\downarrow	\downarrow	\downarrow	\downarrow		C3. Testing by detection background		C
		**					D1. Route decision making		D1
	21						D2. COLREGs based collision avoidance	Intelligent route decision-	D2
							D3. Intention inference based collision avoidance	making system	D3
	22						D4. Waypoint tracking		D4
							E1. Communication network conversion test	Data Exchange &	E1
	06	*	1				E2. VDES message transmission/reception and transmission success rate check	communication	E2
		A1	B1	B6			E3. VDES receive power and sensitivity check	communication	E3
	07	2					F1. Respond to attack scenarios (spoofing, snipping, etc.)		F1
		\uparrow	\uparrow	\uparrow	\uparrow		F2. Access control between the ship's lower network and detection after abnormal signs	Cyber security	F2
	08				1		F3. DPI performance confirmation	Cyber security	F3
							F4. Warning test after receiving cyber threats		F4
Day 2	09		1		1		G1. Fire detection and response		G1
		C1	C2	C3	A2		G2. Flooding detection and response	Incident response	G2
	10						G3. Black out recovery test		G3
							H1. Speed control		Н
	11		1		1		H2. Rudder angle control	Shore remote control	Н
							H3. Speed & rudder control		Н
	12	\downarrow	\downarrow	\downarrow	\downarrow		** Come back to harbor		
		**							

<Sea-trial procedure under development>

Shipboard systems and tested items

Test objects

- Digital bridge system
- Intelligent situational awareness system
- Intelligent navigation system
- Shore remote control system
- Damage control system

Digital bridge system

Purpose

• To verify function as shipboard **data interface** -Data acquisition & distribution

* "Development of Integrated Platform & Digital Bridge for Autonomous Navigation, Control of Engine Room" (NS4980) Function test as per scenario

Data acquisition & Distribution monitoring (MQTT explorer)

Digital bridge dashboard

Intelligent Situational Awareness System (ISAS)

Purpose

- To verify maritime target detection performance as per scenario
- To acquire verify & train data for detection algorithms

Result & Plan

- Acquire data for derivation of detection success rate
- Improve/train detection algorithm based on acquired data for next sea-trial

Intelligent Situational Awareness System (ISAS)

* "Development of a Situational Awareness System for Preventing Collisions and Accidents of Autonomous Ships" (NS4890)

Intelligent navigation system

Purpose

- To verify route tracking & collision avoidance performance as per scenario at real sea condition
- The 1st sea trial (16th~17th Aug. 2023) Overview
 - : Route tracking & simple encounters w/ 1 real target ship and virtual ships
- The 2nd sea trial (6th~10th Nov. 2023) Overview
 - : Complex encounters w/ 3 real target ships and virtual ships

*"Development of Autonomous Navigation System with Intelligent Route Planning Function" (MS5881)

Intelligent navigation system

The 1st sea trial

: Route tracking & $\boldsymbol{simple\ encounters\ }$ with 1 real target ship and virtual ships

Situations such as head-on & crossing

The 2nd sea trial

: **Complex encounters** with 3 real target ships and virtual ships Situations such as **head-on**, **overtaking**, **overtaken**, **crossing and etc.**)

*The result of "Development of Autonomous Navigation System with Intelligent Route Planning Function" (MS5881)

Remote control system

Assured

- Data communication
- Control mode
- Remote control command

*This result was supported by National R&D Project "Development of Validation and Verification Technique for Intelligent System of Autonomous Ships" (NS4930)

Damage control system'

- Incident situation monitoring
- Operation of response system

from shore side

Incident situation	Fire	Flooding
	Fire door & damper close	Ship stability calculation
Response	Vent. fan stop	shutoff valve
action	Fire fighting valve & pump activation	Bilge pump activation

 \ast The results of "Incident Response System and Reliability Assessment for Autonomous ship"

<section-header>

Simulator* stand with sensors

*Create incident situation for safe & efficient test

Installation of the system(temp.)

Further work

Autonomous Ship Verification & Evaluation Research Center

Korea Research Institute of Ships & Ocean Engineering

4. Remote Operation Centre

Remote Operation System

Prototype (1 ship)

Remote Operation of Multiple MASS

* This project co-works with OpenBridge & OpenRemote, Norway international projects.

- Remote Operation Centre (ROC)
- Remote Maritime Workstation (RMW)
- Multi-Remote Operation System (M-ROS)
- Virtual Ship Modeling

4. Infrastructure extension

Enhancement of test environment (less virtual, more physical)

< NOW >

- Sea-trial Testbed (HAEYANG NURI)
- Simulation-based Testbed (S-TAS)
- Digital Twin Bridge/Engine (DTB/E)
- Traffic Control System
- Big Data Platform

LIST

PLANNING >

- Remote Control Center (ROC)
- Maintenance Facility
- Full Mission Bridge MASS Simulator
- Barge & Mooring System
- · Sea-trial testbed vessels
- Smart Buoy
- Drone

4. Expand ASVERC

Solution ASVERC functionality in near future

www.kassproject.org Safe Ship lean Ocean Deep Sea Thank You